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Abstract
We obtain the precise form of two Gamow functionals representing the
exponentially decaying part of a quantum resonance and its mirror image
that grows exponentially, as a linear, positive and continuous functional on an
algebra containing observables. These functionals do not admit normalization
and, with an appropriate choice of the algebra, are time reversal of each other.

PACS numbers: 03.65.Db, 02.30.Sa, 02.30.Tb

1. Introduction

The goal of the present paper is to give a precise definition of the Gamow functional on
a formalism that has been used previously to discuss a variety of topics such as resonance
behaviour, decoherence, generalized states with diagonal singularity,etc [1–5]. This formalism
has been inspired in previous work by Prigogine and collaborators [6–8].

Gamow vectors [9] are generalized eigenvectors of the total Hamiltonian, in a resonant
scattering process, with complex eigenvalues given by the simple poles of the analytic
continuation of the S-matrix [10] or the reduced resolvent [11–14]. As the Hamiltonian is
a self-adjoint operator, its eigenvectors with complex eigenvalues cannot live in a Hilbert
space but on certain extensions of the Hilbert spaces: the rigged Hilbert spaces (RHS)
[10, 12, 13, 15]. Gamow vectors represent the exponentially decaying part of a resonance (for
a discussion on the decay in quantum mechanics, see [16]). The question arises that whether
a Gamow vector represents a truly quantum state, i.e. an element of the physical reality.

In conventional quantum mechanics in Hilbert space, let |ϕ〉 be a pure state; its
corresponding density operator is given by ρ = |ϕ〉〈ϕ|. The operator ρ represents the
state |ϕ〉 in the Liouville space and, therefore, this is the object that should represent the
state in quantum statistical mechanics. Thus, if we accept that the Gamow vector represents a
quantum state, it must have its counterpart in quantum statistical mechanics. Since the Gamow
vector belongs to an extension of the Hilbert space, its corresponding density matrix should
belong to an extension of the conventional Liouville space, called the rigged Liouville space
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(RLS) [17]. Although we can construct rigorously a dyadic product of Gamow vectors in the
RLS, these objects do not satisfy the minimal requirements to be a state. In particular, objects
like tr (|f0〉〈f0|) or tr (|f0〉〈f0|H), where |f0〉 is the Gamow vector, are not defined. In other
words, objects like 〈f0|f0〉 and 〈f0|H |f0〉, representing, respectively, the normalization and
the mean value of the energy of a Gamow vector, cannot be defined. We have studied the
properties of Gamow dyads in RLS in [18].

In statistical mechanics, states are also represented by continuous positive and normalized
functionals on an algebra of observables [19]. This is the approach we wish to analyse in this
paper. We shall construct an algebra of observables in which the Gamow ‘state’ can be defined
as a continuous functional on this algebra. This functional is characterized by its decay mode
and is also positive, but cannot be normalized (as its normalization results to be zero). Worse
of all, the expectation values of the integer powers of the Hamiltonian,Hn, n = 0, 1, 2, . . . ,
vanish. As a result of this discussion we conclude that the Gamow functional cannot represent
a quantum state even if we admit the existence of particles with a purely exponential decaying
mode.

This approach does not restrict its interest to statistical mechanics but is also suitable for
applications to the theory of decaying nuclei [20].

To better understand the notion of Gamow functional, we need to use the notion of rigged
Hilbert space (RHS). An RHS is a triplet of spaces

Φ ⊂ H ⊂ Φ×

where H is the Hilbert space of pure normalized states of a quantum system, Φ is a space
of test vectors (usually a space of functions called the space of test functions) with its own
topology which is stronger (in the sense that has more open sets, less convergent sequences
and that the canonical injection i : Φ �−→ H, i(ϕ) = ϕ, is continuous). Φ× is the antidual
of Φ or the space of all continuous antilinear1 functionals from Φ to C. It is precisely this
extension Φ× of the Hilbert space which allows the existence of generalized eigenvectors of
an observable [15].

This paper is organized as follows. In section 2, we define the algebra of observables
compatible with the ‘free’ or unperturbed Hamiltonian H0. In section 3, we define the notion
of states as functionals over this algebra. In section 4, we define the algebras of observables
compatible with the total Hamiltonian H and the Gamow functionals on it. We can define
these algebras in various ways and, with an appropriate definition of the algebras, the Gamow
functionals are time reversal of each other. We conclude the paper with a mathematical
appendix, in which we study the mathematical tools used in our study.

2. The algebra A0 of observables

The most intuitive model that produces quantum resonances is possibly the resonant scattering
model, in which we assume the existence of a resonant scattering process [10] with two
dynamics. The unperturbed or free dynamics is given by H0 and the perturbed dynamics by
H := H0 + V . We assume also that the Mφller wave operators exist and that the scattering
is asymptotically complete [21]. In this case a theorem by Gelfand [22] and Maurin [23]
states that there exists a complete set of generalized eigenvectors of H0 (in a suitable RHS),

1 A functional F on Φ is antilinear, if it is a mapping from Φ into C with the following condition

F(α ϕ + β ψ) = α∗ F(ϕ) + β∗ F(ψ)

where the star denotes complex conjugation.
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|E〉, for all E in the continuous spectrum of H0 (which we assume to be simple and equal to
R+ := [0,∞)):

H0|E〉 = E|E〉 E ∈ R
+.

The vector |E〉 belongs to the dual space Φ× of an RHS, Φ ⊂ H ⊂ Φ× and the
completeness means that

H0 =
∫ ∞

0
dE E|E〉〈E| =

∫ ∞

0
dE

∫ ∞

0
dE′ δ(E − E′) E|E〉〈E′|. (1)

Therefore, the expression (1) for H0 means that H0 ∈ L(Φ,Φ×), i.e. the space of continuous
linear operators from Φ into Φ×; see also [18]. The action of |E〉 on the test function ϕ ∈ Φ
gives [ϕ(E)]∗, the complex conjugate of the value of ϕ at E. We also have that 〈E|ϕ〉 = 〈ϕ|E〉∗.

Equation (1) allows us to obtain, at least formally, the following matrix element:

〈E′|H0|E′′〉 =
∫ ∞

0
dEE〈E′|E〉〈E|E′′〉. (2)

Since 〈E′|E〉 = δ(E − E′), where the deltas are relative to the integration from 0 to ∞,
(2) is equal to E′δ(E′ − E′′) and, therefore, it is well defined as a distributional kernel.

Definition . An operator O is said to be compatible with H0 if it has the form

O =
∫ ∞

0
dEOE|E〉〈E| +

∫ ∞

0
dE

∫ ∞

0
dE′OEE′ |E〉〈E′| (3)

where OE and OEE′ are ordinary functions2 on the variables E and E′ (see appendix). Here,
the function OE is an entire analytic function in a class3 that contains polynomials in E. The
functionOEE′ should be of the form

OEE′ =
∑
ij

λij ψi(E) φj (E
′) (4)

where ψi(E) φj (E′) ∈ Z, i.e. are entire analytic functions on the variables E and E′ (see
appendix for a definition of Z). As we see later, this is not the only possible choice for the
functionsOEE′ , although it must be, in any case functions on the complex variables E and E′.
The sum in (4) is finite.

It is important to remark that the set of observables compatible with H0 is an algebra,
which we denote as A0. See appendix for the definition on the algebra operations on A0.

At this point it would be convenient to justify our choice. In fact, we want the following
properties for the set of observables A0, compatible with H0:

(i) A0 should be an algebra. This permits the use of the traditional point of view according
to which observables form a (topological) algebra and states are continuous, positive and
normalizable functionals on this algebra [19].

(ii) The precise choice of A0 is largely a matter of convenience. First of all, the set of states
must contain those which are physically meaningful. All the other criteria, do not seem
to be very essential from the physical point of view.
For instance: What kind of observables should we include in A0? Should functions on
H0, including H0 itself, be included in A0?
Although at the first sight one is tempted to give a positive answer to this question, we
should notice that we want to discuss the nature of Gamow objects. These Gamow objects

2 Here we are using the notation in [1–4, 20].
3 This class is the sum P + Z of the space P of the polynomials, considered as entire analytic functions of a complex
variable, plus the space Z of entire analytic functions introduced in the appendix.
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are supposed to describe an aspect of resonance behaviour and resonances are assumed
to be produced in resonant scattering [10]. But then, our question not always has a
positive answer in scattering theory. For instance, in the algebraic theory of scattering
developed by Amrein et al [24], the algebra A0 contains only bounded operators in the
bicommutant (operators which commute with those commuting with H0) of H0. Since H0

is not bounded, H0 is not in the A0 of [24].
(iii) What is really relevant here is that the algebra of observables be spanned by the dyads

of the form |E〉〈E| and |E〉〈E′|, where E and E′ run out the continuous spectrum of H0.
To see this, at least intuitively, let us note that for a pair of state vectors ψ , ϕ and an
observable O, we have

〈ψ|O|ϕ〉 =
∫

〈ψ|E〉〈E|O|E′〉〈E|ϕ〉 dE.

Then, if the kernel 〈E|O|E′〉 satisfies the van Hove hypothesis4 [5, 6],

〈E|O|E′〉 = OE δ(E − E′) +OEE′

we have that

〈ψ|O|ϕ〉 =
∫

〈ψ|E〉〈E|ϕ〉OE dE +
∫

〈ψ|E〉〈E′ |ϕ〉OEE′ dE dE′

from where (4) follows.
Then the choice of the functions OE and OEE′ gives the observables that we want to
consider.

(iv) As we shall see in the next section, we want to include in the formalism states which are
outside the Hilbert–Schmidt space (and therefore are not density operators on the Hilbert
space) and we have to adapt the algebra so as to include these singular objects.

(v) Since we want Gamow objects that are continuous functionals on operator algebras (not
on A0 but instead on the derived algebras A± to be defined in section 4) and since Gamow
functionals are characterized by certain complex numbers (of the kind ER − i�/2, where
ER is the resonant energy and � the width [10]), it seems reasonable that the functions
OEE′ be defined over a complex domain. Analyticity of these functions over this domain
will then allow us to perform all kinds of operations that are customary in the study of
resonances and Gamow vectors: contour integrals, calculus of residues, etc. [10, 12, 15,
20].

(vi) The issue whether the algebra A0 (as well as the algebras A± to be defined in section 4)
has a precise physical meaning has the same answer as a similar question that has been
addressed by the RHS: Given an RHS Φ ⊂ H ⊂ Φ×, what is the physical meaning of
the space of test vectors Φ? Should Φ be contained or even be spanned by the space
of pure states which are physically preparable? Not neccesarily, for if Φ is dense in
H, any physically preparable state can be approached by a vector in Φ as much as we
want, with respect to the norm of H. This norm is produced by the scalar product, what
gives the transition amplitudes. As a matter of fact, the space Φ is chosen for topological
convenience as well as to determine the size of the dual space Φ×, which must contain
all generalized states (like plane waves). Thus, the specific form of the algebra A0 is also
determined by mathematical convenience.

Once we have motivated the choice of A0, let us comment some of its properties.
It is interesting to note that the operator O commutes, according to the definition of the

product in the algebra given in the appendix, with H0 if and only if OEE′ = 0. The proof of
this statement is also presented in the appendix.
4 This hypothesis was introduced by van Hove in his study of unstable quantum systems.
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In the appendix, we have also given the topology on the algebra A0 that will allow us to
define continuous functionals on A0. We want to add that this topology makes the following
mappings continuous:

O �−→ OE O �−→ OEE′ (5)

for all E,E′ ∈ C, where C is the complex plane. According to a useful notation [6], we can
represent these two functionals as (E| and (EE′|, respectively, so that

OE = (E|O) OEE′ = (EE′|O) (6)

which yields

O =
∫ ∞

0
(E|O)|E〉〈E| dE +

∫ ∞

0
dE

∫ ∞

0
dE′(EE′|O) |E〉〈E′|. (7)

This notation is consistent with [6]

|E〉〈E| ≡ |E) |E〉〈E′| ≡ |EE′) (8)

and

(E|w) = δ(E −w) (EE′|ww′) = δ(E −w) δ(E′ −w′). (9)

Taking into account that 〈E|E′〉 = δ(E − E′), where the delta refers to integration from
0 to ∞, we also obtain that

〈E|O|E′〉 = OE δ(E − E′) +OEE′ . (10)

It is also important to remark that only self-adjoint elements of A0 should be considered as
observables. The condition for self-adjointness in our case is very simple. The formal adjoint
of O is given by

O† :=
∫ ∞

0
dEO∗

E |E〉〈E| +
∫ ∞

0
dE

∫ ∞

0
dE′O∗

EE′ |E′〉〈E|. (11)

It is easy to show that this definition is consistent with the formula (ϕ,Oψ) = (O†ϕ,ψ),
when ϕ, ψ ∈ Φ and (−,−) is the scalar product on the Hilbert space H (see (14)). Here, Φ
is the space of test functions introduced earlier, on which |E〉 applies.

Definition . We say that O is self-adjoint if O = O†. An operator O of the form (3) is an
observable if and only if it is self-adjoint.

Proposition 1. The operator O is an observable if and only if

OE = O∗
E and OEE′ = O∗

E′E (12)

where ‘∗’ means complex conjugate.

Proof. Let us assume that O is an observable. Then, it is immediate to show that

〈E|O|E′〉 = OE δ(E − E′) +OEE′
(13)

〈E|O†|E′〉 = O∗
E δ(E − E′) +O∗

E′E.

Since O = O†, (13) implies that OE = O∗
E and OEE′ = O∗

E′E . Reciprocally, if these two
equations hold, then, for any pair of test vectors ϕ and ψ , we have that (ϕ,Oψ) = (O†ϕ,ψ),
as we can easily check. Observe that OEE′ is complex in general. �

Now, we are more interested in clarifying the formalism we use here and the role of
quantum states on it. We do this in the next section.
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3. States

The theorem of Gelfand and Maurin [22, 23] establishes the existence of an RHSΦ ⊂ H ⊂ Φ×

such that if ψ, ϕ ∈ Φ, we have

(ψ, ϕ) =
∫ ∞

0
〈ψ|E〉〈E|ϕ〉 dE (14)

where the brackets (-,-) denote scalar product on the Hilbert space H. If we omit the arbitrary
vector ψ ∈ Φ in (14), we have

ϕ =
∫ ∞

0
|E〉〈E|ϕ〉 dE. (15)

However, formula (15) is inconsistent as far as its right-hand side is a functional on Φ (and
therefore a vector in Φ×) and its left-hand side is a vector in Φ. As Φ ⊂ Φ×, ϕ can be also
looked as a vector in Φ×. For convenience, we introduce the identity mapping I that maps a
vector on Φ as the same vector as member of Φ×. This identity can be written as

I =
∫ ∞

0
|E〉〈E| dE. (16)

At this point, we can start the discussion on states by calculating the mean value of a pure
state ψ , considered as a vector with norm one on the Hilbert space H, on the observable O.
This is given by

〈ψ|O|ψ〉 =
[∫ ∞

0
dE 〈ψ|E〉〈E|

] [∫ ∞

0
dE′OE′ |E′〉〈E′|

+
∫ ∞

0
dE′

∫ ∞

0
dE′′OE′E′′ |E′〉〈E′′|

][∫ ∞

0
dE′′′ |E′′′〉〈E′′′|ψ〉

]

=
∫ ∞

0
dE |〈ψ|E〉|2OE +

∫ ∞

0
dE

∫ ∞

0
dE′OEE′ 〈ψ|E〉〈E′ |ψ〉

=
∫ ∞

0
dE |ψ(E)|2OE +

∫ ∞

0
dE

∫ ∞

0
dE′OEE′ ψ∗(E)ψ(E′). (17)

Obviously, this comes after 〈ε|ζ 〉 = δ(ε − ζ ), when ε, ζ = E,E′, E′′, E′′′. We can use here
the notation ρE = |ψ(E)|2 and ρEE′ = ψ∗(E)ψ(E′). Note that ρE = ρEE.

Now, let ρ be a mixture of states. Then, ρ = ∑
i λi |ψi〉〈ψi | with

∑
i λi = 1, λi � 0

and 〈ψi |ψj 〉 = δij . The mean value of the observable O, compatible with H0, in the state ρ is
given by

trρO =
∑
i

λi 〈ψi |O|ψi〉

=
∑
i

λi

∫ ∞

0
dE |ψi(E)|2OE +

∑
i

λi

∫ ∞

0
dE

∫ ∞

0
dE′OEE′ ψ∗

i (E)ψi(E
′)

=
∫ ∞

0
dE

[∑
i

λi |ψi(E)|2
]
OE

+
∫ ∞

0
dE

∫ ∞

0
dE′OEE′

[∑
i

λiψ
∗
i (E)ψi(E

′)

]
. (18)

We call ρE := ∑
i λi |ψi(E)|2 and ρEE′ := ∑

i λi ψ
∗
i (E)ψi(E

′). Note that ρE is real and
ρEE′ is complex in general. It is also true that ρE = ρEE .
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Now, observe that in both cases we can write the state as

ρ =
∫ ∞

0
dE ρE (E| +

∫ ∞

0
dE

∫ ∞

0
dE′ ρEE′ (EE′| (19)

so that when applied to the observable O written as

O =
∫ ∞

0
dEOE |E) +

∫ ∞

0
dE

∫ ∞

0
dE′OEE′ |EE′) (20)

gives the result

(ρ|O) := tr ρO =
∫ ∞

0
dE ρE OE +

∫ ∞

0
dE

∫ ∞

0
dE′ ρEE′ OEE′ (21)

where we have used the relations (9). For the two choices (17) and (18), ρ in (19) defines a
continuous positive and normalized functional on A0 and therefore a state.

At this point, we observe that the algebra A0 is a direct sum of two subalgebras, the
algebra B spanned by∫ ∞

0
dEOE |E) (|E) = |E〉〈E|)

and the algebra C spanned by∫ ∞

0
dE

∫ ∞

0
dE′OEE′ |EE′) (|EE′) = |E〉〈E′|).

Both algebras do not have common elements other than the zero (see appendix). Therefore
A0 = B + C is a direct sum. As a consequence, every continuous linear functionals on A0 is
the sum of a continuous linear functional on B plus a continuous linear functional on C.

The algebras B and C are, respectively, isomorphic to the algebras of the functions of
the form OE and OEE′ . Therefore, A0 is isomorphic to the algebra of pairs of functions
(OE,OEE′) with a product that can be immediately obtained from the product on A0.

From all this, we conclude that the most general form of a state on A0 is of the form (19)
being ρE and ρEE′ continuous linear functionals (distributions) on the spaces of functions of
the form OE and OEE′ , respectively (see appendix).

In this formalism, we see that there are three kinds of states:

(i) Pure states. A state is pure if and only if there is a square integrable function ψ(E) such
that ρE = |ψ(E)|2 and ρEE′ = ψ∗(E)ψ(E′).

(ii) Mixtures. For mixtures ρEE = ρE .
(iii) Generalized states, which are all others.

Remarks

(i) Pure states and mixtures have the property that ρE = ρEE. The converse is also true, if
ρEE is well defined and ρE = ρEE, then (19) represents either a pure state or a mixture,
i.e., it admits a representation as a density operator on Hilbert space. On the other hand,
generalized states cannot be represented as a density operator on a Hilbert space. The
need for generalized states has been established by van Hove first [5] and a mathematically
consistent definition of them was given in [6]. Our formalism is clearly inspired in [6],
although our goals are different as we try to understand the role of the Gamow objects
on it.

(ii) There are two kinds of generalized states, those for which ρ(E,E) is well defined
in a distributional sense and those for which it is not. For example, assume that
ρ(E,E′) = δ(E − E0) δ(E

′ − E0). In this case, obviously ρ(E,E) does not make
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sense. If for a given state ρ(E,E) is well defined, this is a generalized state if and only
if ρ(E) �= ρ(E,E).

The evolution of the state ρ under the free Hamiltonian H0 is

(ρt |O) = (
ρ0 | eitH0 O e−itH0

)

=
∫ ∞

0
dEOEρE +

∫ ∞

0
dE

∫ ∞

0
dE′OEE′ eit (E−E′) ρEE′ . (22)

IfOEE′ is bounded and ρ is a mixture, due to the integrability of
∑
i λi ψ

∗(E)ψ(E′),
thenOEE′ρEE′ is also integrable and the second integral term in (22) vanishes as t �−→ ∞
as the result of the Riemann–Lebesgue lemma. After the limit process, only the first term
remains. This fact is usually called decoherence.

4. The algebras A± of observables

The algebras A± play the same role with respect to the total Hamiltonian H as the algebra A0

with respect to H0.
First of all, let Ω± be the Mφller wave operators, defined customary as [21]:

Ω+ϕ = lim
t �→+∞ eitH e−itH0 ϕ = ϕ+

and

Ω−ϕ = lim
t �→−∞ eitH e−itH0 ϕ = ϕ−

whenever these limits exist. The Mφller wave operators relate state vectors which evolve with
the total Hamiltonian H with state vectors which evolve with the free Hamiltonian H0 and that
are asymptotically (as t �−→ ±∞) identical (in our case ϕ evolves freely and ϕ± with H and
limt �→±∞

(
e−itH0ϕ − e−itH ϕ±) = 0).

As the Mφller wave operators are assumed to exist, let us define [15]5

|E±〉 = Ω±|E〉. (23)

The definition (23) makes sense as proven in [15]. Now, take O as in (3) and write

O± = Ω±OΩ†
±. (24)

Since (23) implies6 that 〈E|Ω†
± = 〈E±|, the operatorsO± can then be written as

O± =
∫ ∞

0
OE|E±〉〈E±| dE +

∫ ∞

0
dE

∫ ∞

0
dE′ |E±〉〈E′±|OEE′ . (25)

5 If we define Φ± := Ω±Φ, we have two new triplets

Φ± ⊂ H ⊂ (Φ±)×

where H is the absolutely continuous part of the Hilbert space with respect to H (see [21]). The Mφller operators
can be extended to bicontinuous mappings from Φ× into (Φ±)×, so that (23) makes sense. This definition is made
through the duality formula

〈ϕ|E〉 = 〈Ω±ϕ|Ω±|E〉 = 〈ϕ±|E±〉
where ϕ is an arbitrary vector in Φ.
6 To see this, write 〈E|ϕ〉 := 〈ϕ|E〉∗ with ϕ ∈ Φ. Then

〈E±|ϕ±〉 = 〈E|ϕ〉 = 〈E|Ω†
±Ω±|ϕ〉 = 〈E|Ω†

±|ϕ±〉.
This expression is valid for any ϕ± ∈ Φ±. Then 〈E|Ω†

± = 〈E±| follows.
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We say that an operator7 O± is compatible with H if and only if, it can be written in the
form given in equation (25). Since

〈E±|w±〉 = 〈E|Ω†
± Ω±|w〉 = 〈E|w〉 = δ(E −w) (26)

we obtain that the operators of the type O+ and O− in (25) form respective algebras that we
call A+ and A− (see in the appendix how to define the product for two elements of A0. After
(26), it is clear that the product in A± is defined analogously). Since the operators Ω± are
unitary8, the algebras

A± := Ω± A0Ω
†
±

are isomorphic (algebraically and topologically) to the algebra A0.
States on these algebras have the form

ρ± =
∫ ∞

0
ρE(E

±| dE +
∫ ∞

0
dE

∫ ∞

0
dE′ ρEE′ (EE′±| (27)

where

(E±|O±) = OE (EE′±|O±) = OEE′. (28)

The operators (25) can also be written as

O± =
∫ ∞

0
dEOE |E±) +

∫ ∞

0
dE

∫ ∞

0
dE′OEE′ |EE′±) (29)

so that

(E±|w±) = δ(E −w) (EE′±|ww′±) = δ(E − w) δ(E′ −w′). (30)

This means that the operational rules in A± are the same as in A0. The same can be
said about the topology as the components OE and OEE′ of both algebras are the same. This
topology is transported from A0 to A± by the Mφller operators. Also pure states, mixtures
and generalized states with diagonal singularity can be written as functionals on A± exactly
as on A0. Time evolution of ρ± with respect to H is of the form

(ρ±
t |O±) =

∫ ∞

0
dEρE OE +

∫ ∞

0
dE

∫ ∞

0
dE′ eit(E−E′) ρEE′ OEE′ (31)

Observe that the first integral in (31) does not evolve in time. The second part vanishes for
t �−→ ±∞ if ρEE′ OEE′ is an integrable function in the two dimensional variable (E,E′).

5. The Gamow functionals

If the pair {H0,H } produces resonances, these are manifested as pairs of poles of the same
multiplicity in the analytic continuation of the S-matrix in the energy representation [10]
or the reduced resolvent [14]. Both are complex functions of the energy considered as a
complex variable and, under very general conditions [14], have poles located at the same
points. These poles may have arbitrary multiplicity and appear into complex conjugate pairs
of the same multiplicity, although only simple resonance poles yield exponentially decaying
Gamow vectors [25]. Thus, let us assume that we have a pair of resonance poles located at
the points z0 = ER − i�/2 and its complex conjugate z∗0. Within the above formalism is quite
easy to define the decaying Gamow functional.
7 These operators are continuous linear mappings from Φ± into (Φ±)×. Therefore, they are a generalization of the
usual notion of operator as a linear mapping on H.
8 We assume asymptotic completeness [21]. Therefore, Ω± are unitary operators between the absolutely continuous
subspaces of H0 and H.
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For any function ψ ∈ Z, the functional δz maps ψ(E) into its value at z, ψ(z). If φ is
another function in Z, the tensor product δz ⊗ δz′ maps the function ψ ⊗ φ into ψ(z)φ(z′).

Then, we define the decaying Gamow functional as

ρD :=
∫ ∞

0
dE

∫ ∞

0
dE′ δz∗0 ⊗ δz0(EE

′+|. (32)

This is obviously an element of A×
+ , the dual of the algebra A+. Note that (ρD)E = 0 and

(ρD)EE′ = δz∗0 ⊗ δz0 . The action of ρD on O ∈ A+ is given by

(ρD|O) = Oz∗0 z0 . (33)

The functional ρD has the following properties: (ρD(0) = ρD)

(ρD(t)|O) =
∫ ∞

0
dE

∫ ∞

0
dE′ δz∗0 z0 OEE′ eit (E−E′) = eit (z∗0−z0) Oz∗0 z0

= e−t� Oz∗0 z0 = e−t� (ρD|O) (34)

where z0 = ER − i�2 , being ER the resonant energy and � the mean life. We observe that ρD

decays exponentially for all values of the time. Other properties of ρD are

(ρD|I+) = 0 (35)

where I + is given by

I+ = Ω+ I Ω†
+ =

∫ ∞

0
|E+〉〈E+| dE

and9 I is given in (16)

(ρD|Hn) = 0, n = 0, 1, 2, . . . (36)

where

Hn =
∫ ∞

0
dEEn |E+).

We can choose the functions OE and OEE′ in such a way that the evolution ρD(t) for the
Gamow functional is either valid for t > 0 only or for all values of time. In the latter case, the
evolution law is not given by a semigroup and this eliminates the problem of fixing the time
t = 0 as ‘the instant at which the preparation of the quasistationary state has been completed
and starts to decay’ [10, 26]. In the former case, OEE′ cannot belong to a class of entire
functions on the variables EE′, as discussed later.

In summary, the Gamow functional ρD has the following properties:

1. It is linear and continuous on the algebra A+.
2. It is positive, i.e. (ρD|(O+)†O+) � 0.
3. Equation (35) shows that the functional ρD does not admit a normalization10. A quantum

state is defined to be a linear functional on an algebra, containing the observables of the
system, which is continuous, positive and normalizable. As ρD is not normalizable, it is
not a state in the ordinary sense. In addition, equation (36) shows that the mean value
of all powers of H on ρD vanish. This is another argument to conclude that ρD does not
represent a truly quantum state.

9 Observe that I + is the canonical injection from Φ+ into Φ†
+. See footnote 3.

10 Should we have (ρD|I +) = α �= 0, we could still normalize the functional as ρD/α.



Gamow functionals on operator algebras 10077

Along the decaying Gamow functional there is the growing Gamow functional ρG which
is defined on A− as

ρG =
∫ ∞

0
dE

∫ ∞

0
dE′ δz0 ⊗ δz∗0 (EE′−|. (37)

The growing Gamow functional ρG has the following properties:

1. The mean value of O− in ρG is given by

(ρG|O−) = Oz0z
∗
0
. (38)

2. It grows exponentially at all times

(ρG(t)|O−) = et� (ρG|O−) (39)

with ρG = ρG(0).
3. It is not normalizable

(ρG|I−) = 0 I− =
∫ ∞

0
|E−〉〈E−| dE. (40)

4. The mean value of the energy on ρG is zero

(ρG|Hn) = 0, n = 0, 1, 2, . . . . (41)

The relation between the algebras A+ and A− is given by the time reversal operator T. In
fact , we have T |E±〉 = |E∓〉, TΦ± = Φ∓ and T |φ±〉 = |φ∓〉 [27], so that

〈E±|T |φ∓〉 = 〈E±|φ±〉 = 〈E|φ〉 = 〈E∓|φ∓〉 (42)

where |φ〉 := Ω−1
+ |φ+〉 = Ω−1

− |φ−〉 and |E〉 = Ω−1
+ |E+〉 = Ω−1

− |E−〉 [15]. Therefore,

〈E±| T = 〈E∓|. (43)

Therefore, if

O± =
∫ ∞

0
dEOE |E±〉〈E±| +

∫ ∞

0
dE

∫ ∞

0
dE′OEE′ |E±〉〈E′±|

we have that

TO± T =
∫ ∞

0
dEO∗

E |E∓〉〈E∓| +
∫ ∞

0
dE

∫ ∞

0
dE′O∗

EE′ |E∓〉〈E′∓| (44)

(we recall that T α|η〉 = α∗ T |η〉). Thus, we obtain

A± = TA∓ T . (45)

The relation (44) implies a relation between ρD and ρG, provided that we redefine the
algebras A±. In the new A± the functions OE are now polynomials on the complex variable
E. In the new algebras A± the functions OEE′ will be different for A+ and for A−. For A+,
OEE′ is of the form (4) with

ψi(E) ∈ S ∩ H2
+ φj (E

′) ∈ S ∩ H2
− i, j = 1, 2, . . . (46)

where S is the Schwartz space11 and H± are the spaces of Hardy functions on the upper half
plane and the lower half plane. Hardy functions are analytic in their respective half planes and
their boundary values on the real line are square integrable functions (see appendix). Thus,
OEE′ ∈ S ∩ H2

+ ⊗ S ∩ H2
− in the algebraic sense.

11 Functions in S are indefinitely differentiable at all points and they and their derivatives go to zero at ±∞ faster than
the inverse of any polynomial.
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For A−, O ′
EE is of the form (4) with

ψi(E) ∈ S ∩ H2
− φj(E

′) ∈ S ∩ H2
+ i, j = 1, 2, . . . (47)

Thus,OEE′ ∈ S ∩ H2
− ⊗ S ∩ H2

+.
Nothing in the formalism presented so far changes with this choice except the topology

of the algebras (plus the irrelevant fact that we now have two isomorphic A0 algebras; it is not
necessary to insist in this point). However, this choice has an interesting property: the time
reversal of ρD is ρG and vice versa.

Before discussing this interesting point, it is important to remark that if OEE′ ∈
S ∩ H2

+ ⊗ S ∩ H2
−, then eit (E−E′) OEE′ ∈ S ∩ H2

+ ⊗ S ∩ H2
− if and only if t � 0.

The proof is given in the appendix. Analogously, if OEE′ ∈ S ∩ H2
− ⊗ S ∩ H2

+, then
eit (E−E′) OEE′ ∈ S ∩ H2

− ⊗ S ∩ H2
+ if and only if t � 0. Thus, the time evolution for ρD

makes sense for t � 0 only and time evolution for ρG makes sense for t � 0 only. Exactly as
it happens with the Gamow vectors defined in [15].

Let us come back to the time reversal of the Gamow functionals. For ρD the time reversal
operation is defined as

(ρTD|O−) := (ρD|TO−T ). (48)

Since

TO−T =
∫ ∞

0
dEO∗

E |E+〉〈E+| +
∫ ∞

0
dE

∫ ∞

0
dE′O∗

EE′ |E+〉〈E′+| (49)

we have

(ρD|TO−T ) = O∗
z∗0z0
. (50)

Observe that, with this new definition,

OEE′ =
∑
ij

ϕi(E)ψj(E
′) (51)

(the coefficients λij in (4) can be absorbed by the functions ϕi(E)ψj(E′)) with

ϕi(E) ∈ H2
− ∩ S ψj (E

′) ∈ H2
+ ∩ S. (52)

After the properties of Hardy functions [33], we have that

ϕ∗
i (E) ∈ H2

+ ∩ S ψ∗
j (E

′) ∈ H2
− ∩ S (53)

and12

ϕ∗
i (z

∗) = ϕi(z) ψ∗
j (z) = ψj (z

∗). (54)

Thus,

O∗
z∗0z0

=
∑
ij

ϕ∗
i (z

∗
0) ψ

∗
j (z0) =

∑
ij

ϕi(z0) ψj (z
∗
0) = Oz0z

∗
0
. (55)

We conclude that for arbitraryO− ∈ A− we have

(ρTD|O−) = Oz0z
∗
0
= (ρG|O−). (56)

Thus

ρTD = ρG. (57)

Analogously,

ρTG = ρD. (58)
12 This property is not true in general if ϕi(E), ψj (E′) ∈ Z.
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We observe that the decaying Gamow functional and its mirror image act on different
algebras.

It is a belief that resonances are irreversible systems and also that there exists a
microphysical arrow of time in processes like quantum decay [12, 28, 29]. This belief is
expressed into mathematical form by choosing the test spaces Φ± for the Gamow vectors so
that time evolution is defined for the decaying Gamow vector |f0〉 for t � 0 only [15]. With our
second choice for the algebras A± a similar situation occurs as the evolution group splits into
two semigroups and therefore, this picture may also be valid as a mathematical formulation of
irreversibility in decaying systems.
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Appendix

This is a mathematical appendix in which we shall construct explicitly the algebras A0 and
A± and their topologies. Due to the simple relation between these algebras, it is sufficient to
construct A0. For this we have two possibilities: either the functions OE are entire analytic or
are Hardy.

The former option is simpler and the construction is as follows: Let D be the space
of infinitely differentiable complex functions on the set of real numbers that have compact
support. The Fourier transform of a function in D is entire analytic [30]. Therefore, the space
of Fourier transforms of D, Z = F(D), is a space of entire analytic functions. This space
has its own topology [30, 32] and the product of two functions in Z is another function in Z
[30]. Furthermore, the product of a polynomial p(z) times f (z) ∈ Z also belongs to Z, i.e.
p(z)f (z) ∈ Z (which can easily derived from theorems 6.30 and 6.37 in [30]).

Then, OE is a sum of a function in Z plus a polynomial. The two variable function,OEE′ ,
has the form (4) with ϕi(E) and ψj (E′) in Z. Then, OEE′ ∈ Z ⊗ Z. To show that A0 is an
algebra, let us write

G :=
∫ ∞

0
dEGE |E〉〈E| +

∫ ∞

0
dE

∫ ∞

0
dE′GEE′ |E〉〈E′|

where GE and GEE′ are as OE and OEE′ . Then,

OG =
{∫ ∞

0
dEOE |E〉〈E| +

∫ ∞

0
dE

∫ ∞

0
dE′OEE′ |E〉〈E′|

}

×
{∫ ∞

0
dwGw |w〉〈w| +

∫ ∞

0
dw

∫ ∞

0
dw′Gww′ |w〉〈w′|

}

=
∫ ∞

0
dE

∫ ∞

0
dwOE Gw |E〉〈E|w〉〈w|

+
∫ ∞

0
dE

∫ ∞

0
dw

∫ ∞

0
dw′OE Gww′ |E〉〈E|w〉〈w′ |

+
∫ ∞

0
dE

∫ ∞

0
dE′

∫ ∞

0
dwOEE′ Gw |E〉〈E′|w〉〈w|



10080 M Castagnino et al

+
∫ ∞

0
dE

∫ ∞

0
dE′

∫ ∞

0
dw

∫ ∞

0
dw′OEE′ Gww′ |E〉〈E′|w〉〈w′ |

=
∫ ∞

0
dEOE GE |E〉〈E| +

∫ ∞

0
dE

∫ ∞

0
dE′OE GEE′ |E〉〈E′|

+
∫ ∞

0
dE

∫ ∞

0
dE′GE′ OEE′ |E〉〈E′|

+
∫ ∞

0
dE

∫ ∞

0
dE′

∫ ∞

0
dw′OEE′ GE′w′ |E〉〈w′|. (59)

Now, OEGE is either a polynomial on E or a function in Z. The functionsOE GEE′ and
GE′ OEE′ are of the form (4). Let us take the last integral in (43) and interchange E′ and w′

on it. We have ∫ ∞

0
dE

∫ ∞

0
dE′ |E〉〈E′|

∫ ∞

0
dw′OEw′ Gw′E′ . (60)

We can immediate see that the last integral in (60) is a function of the form (4). This shows
that A0 is an algebra. In order to define a topology on this algebra, we first note that A0

considered as a vector space is the direct sum of three spaces

P + Z + Z ⊗ Z (61)

whereP is the space of polynomials on the complex variable E. Let us topologizeP as follows:
consider the space of all functions f (E) ∈ L2[0,∞) such that

∫ ∞

0
|p(E) f (E)|2 dE <∞. (62)

This space is dense in L2[0,∞). For each function f (E) of this kind, we define on P the
following seminorm:

qf,K(p) :=
√∫ ∞

0
|p(E) f (E)|2 dE + sup

E∈K
|p(E)| ∀p ∈ P (63)

K being a compact set in C.
The topologies in Z [30] and in Z ⊗ Z [31] are standard, so that for any p(E) + OE +

OEE′ ∈ P + Z + Z ⊗ Z, a typical seminorm π is of the form

π(p(E) +OE +OEE′) = qf,K(p) + q(OE) + r(OEE′) (64)

where q is a seminorm in Z and r a seminorm in Z ⊗ Z.
Observe that not all quantum pure states are now allowed but only those satisfying

(63). This is quite natural as condition (63) is fulfilled by the states in the domain of
Hn, n = 0, 1, 2, . . . only. A similar restriction is required for mixtures.

Now, the topology on the algebras A± goes exactly as for A0, since these algebras are
isomorphic by construction.

Functionals as (E+|, (EE′+| and ρD are continuous in A+ as (E−|, (EE′−| and ρG are
continuous in A−. The proof is technical and we omit it here.
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The second possibility for the algebras A± has been already presented (see formulas (46)
and (47)). We want to add a few remarks.

1. A Hardy function φ(z) in the upper half plane

C
+ := {z = x + iy y > 0}

is a complex analytic function on C
+ such that

sup
y>0

∫ ∞

−∞
|φ(x + iy)|2 dx = K < ∞.

The function φ(z) has boundary values on the real axis that determine a square integrable
function φ(x) with∫ ∞

−∞
|φ(x)|2 dx � K.

A Hardy function on the upper half plane is uniquely determined by the function of its
boundary values on the real axis [33–35]. The space of such functions is denoted by H2

+
and we have that H2

+ ⊂ L2(R). A similar definition goes for Hardy functions on the lower
half plane. The space of these functions is denoted as H2

−. We have that [33–35]

H2
+ ⊕ H2

− = L2(R).

2. The algebraA± is now isomorphic to P +
(H2

± ∩ S)⊗(H2
∓ ∩ S) and its product is defined

as in (59). The topology in H2
± ∩ S is inherited from S [15].

3. Let OEE′ ∈ S ∩ H2
+ ⊗ S ∩ H2

−. Then

eit (E−E′) OEE′ =
∑
ij

eitEϕi(E) e−itE′
ψj (E

′).

If t > 0, eitEϕi(E) ∈ S ∩ H2
+, if ϕi(E) ∈ S ∩ H2

+. Also, e−itE′
ψj (E

′) ∈ S ∩ H2
−, if

ψj (E
′) ∈ S ∩ H2

− [15]. Both properties are true if and only if t � 0 [15].
Finally, let us prove that O(O±) commutes with H0(H), if and only if OEE′ = 0.

H0O =
[∫ ∞

0
dEE |E〉〈E|

] [∫ ∞

0
dE′OE′ |E′〉〈E′|

+
∫ ∞

0
dE′

∫ ∞

0
dE′′OE′E′′ |E′〉〈E′′|

]

=
∫ ∞

0
dE

∫ ∞

0
dE′EOE′ |E〉〈E|E′〉〈E′|

+
∫ ∞

0
dE

∫ ∞

0
dE′

∫ ∞

0
dE′′EOE′E′′ |E〉〈E|E′〉〈E′′|. (65)

Since 〈E|E′〉 = δ(E − E′), (65) finally gives

H0O =
∫ ∞

0
dE EOE |E〉〈E| +

∫ ∞

0
dE

∫ ∞

0
dE′′EOEE′′ |E〉〈E′′|.

We analogously prove that

OH0 =
∫ ∞

0
dE EOE |E〉〈E| +

∫ ∞

0
dE

∫ ∞

0
dE′′EOE′′E |E′′〉〈E|

=
∫ ∞

0
dEEOE |E〉〈E| +

∫ ∞

0
dE′′

∫ ∞

0
dEE′′OEE′′ |E〉〈E′′|. (66)
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Therefore, H0O = OH0 if and only if EOEE′′ = E′′OEE′′ . This implies that
(E − E′′)OEE′′ = 0 and since OEE′′ is nonsingular, we conclude that OEE′′ = 0.
Reciprocally, ifOEE′′ = 0, then, H0 and O commute. Therefore, an operator O commutes
with H0 if and only if OEE′′ = 0. As in the general case, OEE′′ �= 0, we conclude that A0

is a noncommutative algebra. The same result is obtained if we replace H0 by H and A0

by A±.
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